Logo del repository
  1. Home
 
Opzioni

In pursuit of giants II. Evolution of dusty quiescent galaxies over the last six billion years from the hCOSMOS survey

Donevski, D.
•
Damjanov, I.
•
Nanni, A.
altro
Li, Q.
2023
  • journal article

Periodico
ASTRONOMY & ASTROPHYSICS
Abstract
The physical mechanisms that link the termination of star formation in quiescent galaxies and the evolution of their baryonic components, stars, and the interstellar medium (ISM; dust, gas, and metals) are poorly constrained beyond the local Universe. In this work, we characterise the evolution of the dust content in 545 quiescent galaxies observed at 0.1 < z < 0.6 as part of the hCOSMOS spectroscopic redshift survey. This is, to date, the largest sample of quiescent galaxies at intermediate redshifts for which the dust, stellar, and metal abundances are consistently estimated. We analyse how the crucial markers of a galaxy dust life cycle, such as specific dust mass (M-dust/M-star), evolve with different physical parameters, namely gas-phase metallicity (Z(gas)), time since quenching (t(quench)), stellar mass (M-star), and stellar population age. We find morphology to be an important factor in the large scatter in M-dust/M-star (similar to 2 orders of magnitude). Quiescent spirals exhibit strong evolutionary trends of specific dust mass with M-star, stellar age, and galaxy size, in contrast to the little to no evolution experienced by ellipticals. When transitioning from solar to super-solar metallicities (8.7 less than or similar to 12 +log(O/H) less than or similar to 9.1), quiescent spirals undergo a reversal in M-dust/M-star, indicative of a change in dust production efficiency. By modelling the star formation histories of our objects, we unveil a broad dynamical range of post-quenching timescales (60 Myr < t(quench) < 3.2 Gyr). We show that M-dust/M-star is highest in recently quenched systems (t(quench) < 500 Myr), but its further evolution is non-monotonic, as a consequence of different pathways for dust formation, growth, or removal on various timescales. Our data are best described by simulations that include dust growth in the ISM. While this process is prevalent in the majority of galaxies, for similar to 15% of objects we find evidence of additional dust content acquired externally, most likely via minor mergers. Altogether, our results strongly suggest that prolonged dust production on a timescale of 0.5-1 Gyr since quenching may be common in dusty quiescent galaxies at intermediate redshifts, even if their gas reservoirs are heavily exhausted (i.e. cold gas fraction <1-5%).
DOI
10.1051/0004-6361/202346066
WOS
WOS:001083944300012
Archivio
https://hdl.handle.net/20.500.11767/135150
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85173265834
https://arxiv.org/abs/2304.05842
Diritti
open access
Soggetti
  • galaxies: evolution

  • galaxies: formation

  • galaxies: ISM

  • Settore FIS/05 - Astr...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback