Logo del repository
  1. Home
 
Opzioni

Gene Therapy With Angiotensin-(1-9) Preserves Left Ventricular Systolic Function After Myocardial Infarction

Fattah, Caroline
•
Nather, Katrin
•
Mccarroll, Charlotte S.
altro
Nicklin, Stuart A.
2016
  • journal article

Periodico
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
Abstract
BACKGROUND Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin-angiotensin-aldosterone system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy when administered via osmotic mini-pump. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in a murine model of myocardial infarction (MI). OBJECTIVES The authors evaluated effects of Ang-(1-9) gene therapy on myocardial structural and functional remodeling post-infarction. METHODS C57BL/6 mice underwent permanent left anterior descending coronary artery ligation and cardiac function was assessed using echocardiography for 8 weeks followed by a terminal measurement of left ventricular pressure volume loops. Ang-(1-9) was delivered by adeno-associated viral vector via single tail vein injection immediately following induction of MI. Direct effects of Ang-(1-9) on cardiomyocyte excitation/contraction coupling and cardiac contraction were evaluated in isolated mouse and human cardiomyocytes and in an ex vivo Langendorff-perfused whole-heart model. RESULTS Gene delivery of Ang-(1-9) reduced sudden cardiac death post-MI. Pressure volume measurements revealed complete restoration of end-systolic pressure, ejection fraction, end-systolic volume, and the end-diastolic pressure volume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham. Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via increasing calcium transient amplitude and contractility. Ang-(1-9) increased contraction in the Langendorff model through a protein kinase A-dependent mechanism. CONCLUSIONS Our novel findings showed that Ang-(1-9) gene therapy preserved left ventricular systolic function post-MI, restoring cardiac function. Furthermore, Ang-(1-9) directly affected cardiomyocyte calcium handling through a protein kinase A-dependent mechanism. These data emphasized Ang-(1-9) gene therapy as a potential new strategy in the context of MI. (C) 2016 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.
DOI
10.1016/j.jacc.2016.09.946
WOS
WOS:000389593000009
Archivio
http://hdl.handle.net/11368/2895311
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85003844969
http://www.sciencedirect.com/science/article/pii/S0735109716365755
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/3.0/it/
FVG url
https://arts.units.it/bitstream/11368/2895311/1/Fattah J Am Coll Cardiol 2016.pdf
Soggetti
  • adeno-associated viru...

  • calcium

  • inotropy

  • renin angiotensin sys...

  • Cardiology and Cardio...

Web of Science© citazioni
32
Data di acquisizione
Mar 1, 2024
Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback