Logo del repository
  1. Home
 
Opzioni

Hidden Bethe states in a partially integrable model

Zhang, Z
•
Mussardo, G
2022
  • journal article

Periodico
PHYSICAL REVIEW. B
Abstract
We present a one-dimensional multicomponent model, known to be partially integrable when restricted to the subspaces made of only two components. By constructing fully antisymmetrized bases, we find integrable excited eigenstates corresponding to the totally antisymmetric irreducible representation of the permutation operator in the otherwise nonintegrable subspaces. We establish rigorously the breakdown of integrability in those subspaces by showing explicitly the violation of the Yang-Baxter equation. We further solve the constraints from the Yang-Baxter equation to find exceptional momenta that allows Bethe ansatz solutions of solitonic bound states. These integrable eigenstates have distinct dynamical consequence from the embedded integrable subspaces previously known, as they do not span their separate Krylov subspaces, and a generic initial state can partly overlap with them and therefore have slow thermalization. However, this novel form of weak ergodicity breaking contrasts with that of quantum many-body scars in that the integrable eigenstates involved do not have necessarily low entanglement. Our approach provides a complementary route to arrive at exact excited states in nonintegrable models: instead of solving towers of single-mode excited states based on a solvable ground state in a nonintegrable model, we identify the integrable eigenstates that survive in a deformation of the Hamiltonian away from its integrable point.
DOI
10.1103/PhysRevB.106.134420
WOS
WOS:000886548400002
Archivio
https://hdl.handle.net/20.500.11767/131953
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85140778539
https://ricerca.unityfvg.it/handle/20.500.11767/131953
Diritti
metadata only access
Soggetti
  • Settore FIS/02 - Fisi...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback