PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY
Abstract
Astrophysical fluids may acquire nonzero electrical charge because of strong irradiation or charge separation in a magnetic field. In this case, electromagnetic and gravitational forces may act together and produce new equilibrium configurations, which are different from the uncharged ones. Following our
previous studies of charged test particles and uncharged perfect fluid tori encircling compact objects, we introduce here a simple test model of a charged perfect fluid torus in strong gravitational and
electromagnetic fields. In contrast to ideal magnetohydrodynamic models, we consider here the opposite
limit of negligible conductivity, where the charges are tied completely to the moving matter. This is an extreme limiting case which can provide a useful reference against which to compare subsequent more
complicated astrophysically motivated calculations. To clearly demonstrate the features of our model, we
construct three-dimensional axisymmetric charged toroidal configurations around Reissner-Nordstrom
black holes and compare them with equivalent configurations of electrically neutral tori.