Logo del repository
  1. Home
 
Opzioni

Topological Fukaya category and mirror symmetry for punctured surfaces

Pascaleff J.
•
Sibilla N.
2019
  • journal article

Periodico
COMPOSITIO MATHEMATICA
Abstract
In this paper we establish a version of homological mirror symmetry for punctured Riemann surfaces. Following a proposal of Kontsevich we model A-branes on a punctured surface Σ via the topological Fukaya category. We prove that the topological Fukaya category of σ is equivalent to the category of matrix factorizations of a certain mirror LG model (X,W). Along the way we establish new gluing results for the topological Fukaya category of punctured surfaces which are of independent interest.
DOI
10.1112/S0010437X19007073
WOS
WOS:000461245400004
Archivio
http://hdl.handle.net/20.500.11767/117697
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85066074816
Diritti
closed access
Soggetti
  • Fukaya category of su...

  • mirror symmetry

  • toric Calabi{Yau thre...

  • Settore MAT/03 - Geom...

Scopus© citazioni
5
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
7
Data di acquisizione
Mar 24, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback