Logo del repository
  1. Home
 
Opzioni

Generalizing the Lusternik–Schnirelmann critical point theorem

Fonda, Alessandro
2019
  • journal article

Periodico
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
Abstract
We provide a multiplicity result for critical points of a functional defined on the product of a compact manifold without boundary and a convex set, by assuming, for example, an avoiding rays condition at the boundary of that set. We then extend this result to an infinite-dimensional setting which well applies to the search of periodic solutions of pendulum-like equations.
DOI
10.1112/blms.12205
WOS
WOS:000457650900002
Archivio
http://hdl.handle.net/11368/2939584
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85053496637
https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/blms.12205
Diritti
closed access
FVG url
https://arts.units.it/request-item?handle=11368/2939584
Soggetti
  • Critical point theory...

  • Lusternik-Schnirelman...

Scopus© citazioni
0
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
0
Data di acquisizione
Jan 16, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback