Logo del repository
  1. Home
 
Opzioni

The Markov and Zariski topologies of some linear groups

DIKRANJAN, Dikran
•
TOLLER, Daniele
2012
  • journal article

Periodico
TOPOLOGY AND ITS APPLICATIONS
Abstract
We study the Zariski topology Z_G, the Markov topology M_G and the precompact Markov topology P_G of an infinite group G, introduced in byDikranjan and Shakhmatov (2007--2010). We prove that P_G is discrete for a non-abelian divisible solvable group G, concluding that a countable divisible solvable group G is abelian if and only if M_G = P_G if and only if P_G is non-discrete. This answers a question of Dikranjan and Shakhmatov (2010). We study in detail the space (G,Z_G) for two types of linear groups, obtaining a complete description of various topological properties (as dimension, Noetherianity, etc.). This allows us to distinguish, in the case of linear groups, the Zariski topology defined via words (i.e., the verbal topology in terms of Bryant) from the affine topology usually considered in algebraic geometry. We compare the properties of the Zariski topology of these linear groups with the corresponding ones obtained in Dikranjan and Shakhmatov (2010) in the case of abelian groups.
DOI
10.1016/j.topol.2012.05.007
WOS
WOS:000307147000006
Archivio
http://hdl.handle.net/11390/865850
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84863854616
http://dx.doi.org/10.1016/j.topol.2012.05.007
Diritti
closed access
Soggetti
  • Zariski topology

  • Markov topology

  • algebraic set

  • elementary algebraic ...

  • precompact Markov top...

  • resolvable group

Scopus© citazioni
4
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
5
Data di acquisizione
Mar 23, 2024
Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback