Logo del repository
  1. Home
 
Opzioni

Recurrent points of continuous functions on connected linearly ordered spaces

Alcaraz, D.
•
Sanchis, M.
1999
  • Controlled Vocabulary...

Abstract
Let L be a connected linearly ordered topological space and let f be a continuous function from L into itself. if P (f) and R(f) denote the set of periodic points and the set of recurrent points of f respectively, we show that the center of f is $cl_{L}P(f)$ and the depth of the center is at most 2. Furthermore we have $cl_{L}P(f)=cl_{L}R(f)$.
Archivio
http://hdl.handle.net/10077/4334
Diritti
open access
Soggetti
  • linearly ordered spac...

  • periodic point

  • recurrent point

  • non-wandering point

  • center of a function

  • depth of the center

Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback