Logo del repository
  1. Home
 
Opzioni

Computer vision system and near-infrared spectroscopy for identification and classification of chicken with wooden breast, and physicochemical and technological characterization

Geronimo BC
•
Mastelini SM
•
Carvalho RH
altro
Ida EI
2019
  • journal article

Periodico
INFRARED PHYSICS & TECHNOLOGY
Abstract
Wooden Breast (WB) anomaly on poultry meat causes changes in appearance, reduction of technological and nutritional quality, and consumer acceptance. The objective of this study was to identify and classify chicken with WB using a Computer Vision System (CVS) and spectral information from the Near Infrared (NIR) region by linear and nonlinear algorithms. Moreover, it was characterized the physicochemical and technological parameters, which supported a decision tree modeling. Pectoralis major muscle (n = 80) were collected from a poultry slaughterhouse, spectral information was obtained by NIR and CVS, and WB of chicken was characterized. Combining image analyses with a Support Vector Machine (SVM) classification model, 91.8% of chicken breasts were correctly classified as WB or Normal (N). NIR spectral information showed 97.5% of accuracy. WB showed significant increases in moisture and lipid contents and value of a*, decreases of protein and ash contents, and water holding capacity. The shear force of raw WB was 49.51% hardness, and after cooking was 31.79% softer than N breast. CVS and NIR spectroscopy can be applied as rapid and non-destructive methods for identifying and classifying WB in slaughterhouses.
DOI
10.1016/j.infrared.2018.11.036
WOS
WOS:000457664300039
Archivio
https://hdl.handle.net/11368/3004482
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85057632321
https://www.sciencedirect.com/science/article/pii/S1350449518306649
Diritti
open access
license:copyright editore
license:creative commons
license uri:iris.pri02
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/3004482
Soggetti
  • Image Processing

  • Machine Learning

  • Computer Vision: Food...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback