Logo del repository
  1. Home
 
Opzioni

Accurate and Efficient Description of Protein Vibrational Dynamics: Comparing Molecular Dynamics and Gaussian Models

Micheletti, Cristian
•
CARLONI P
•
MARITAN A.
2004
  • journal article

Periodico
PROTEINS
Abstract
Current all-atom potential based molecular dynamics (MD) allow the identification of a protein's functional motions on a wide-range of time-scales, up to few tens of ns. However, functional large scale motions of proteins may occur on a time-scale currently not accessible by all-atom potential based molecular dynamics. To avoid the massive computational effort required by this approach several simplified schemes have been introduced. One of the most satisfactory is the Gaussian Network approach based on the energy expansion in terms of the deviation of the protein backbone from its native configuration. Here we consider an extension of this model which captures in a more realistic way the distribution of native interactions due to the introduction of effective sidechain centroids. Since their location is entirely determined by the protein backbone, the model is amenable to the same exact and computationally efficient treatment as previous simpler models. The ability of the model to describe the correlated motion of protein residues in thermodynamic equilibrium is established through a series of successful comparisons with an extensive (14 ns) MD simulation based on the AMBER potential of HIV-1 protease in complex with a peptide substrate. Thus, the model presented here emerges as a powerful tool to provide preliminary, fast yet accurate characterizations of proteins near-native motion.
DOI
10.1002/prot.20049
WOS
WOS:000221249100017
Archivio
http://hdl.handle.net/20.500.11767/12860
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-2442543557
Diritti
closed access
Web of Science© citazioni
151
Data di acquisizione
Mar 17, 2024
Visualizzazioni
8
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback