Logo del repository
  1. Home
 
Opzioni

Visual Saliency for Image Captioning in New Multimedia Services

Cornia, Marcella
•
Baraldi, Lorenzo
•
SERRA, Giuseppe
•
Cucchiara, Rita
2017
  • conference object

Abstract
Image and video captioning are important tasks in visual data analytics, as they concern the capability of describing visual content in natural language. They are the pillars of query answering systems, improve indexing and search and allow a natural form of human-machine interaction. Even though promising deep learning strategies are becoming popular, the heterogeneity of large image archives makes this task still far from being solved. In this paper we explore how visual saliency prediction can support image captioning. Recently, some forms of unsupervised machine attention mechanisms have been spreading, but the role of human attention prediction has never been examined extensively for captioning. We propose a machine attention model driven by saliency prediction to provide captions in images, which can be exploited for many services on cloud and on multimedia data. Experimental evaluations are conducted on the SALICON dataset, which provides groundtruths for both saliency and captioning, and on the large Microsoft COCO dataset, the most widely used for image captioning. © 2017 IEEE.
Image and video captioning are important tasks in visual data analytics, as they concern the capability of describing visual content in natural language. They are the pillars of query answering systems, improve indexing and search and allow a natural form of human-machine interaction. Even though promising deep learning strategies are becoming popular, the heterogeneity of large image archives makes this task still far from being solved. In this paper we explore how visual saliency prediction can support image captioning. Recently, some forms of unsupervised machine attention mechanisms have been spreading, but the role of human attention prediction has never been examined extensively for captioning. We propose a machine attention model driven by saliency prediction to provide captions in images, which can be exploited for many services on cloud and on multimedia data. Experimental evaluations are conducted on the SALICON dataset, which provides groundtruths for both saliency and captioning, and on the large Microsoft COCO dataset, the most widely used for image captioning.
DOI
10.1109/ICMEW.2017.8026277
Archivio
http://hdl.handle.net/11390/1105606
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85031674363
http://ieeexplore.ieee.org/document/8026277/
Diritti
metadata only access
Soggetti
  • Attentive Mechanisms,...

Scopus© citazioni
17
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback