Logo del repository
  1. Home
 
Opzioni

Geomorphology and development of a high-latitude channel system: the INBIS channel case (NW Barents Sea, Arctic)

Rui, L.
•
Rebesco, M.
•
Casamor, J. L.
altro
Ivaldi, R.
2019
  • journal article

Periodico
ARKTOS
Abstract
The INBIS (Interfan Bear Island and Storfjorden) channel system is a rare example of a deep-sea channel on a glaciated margin. The system is located between two trough mouth fans (TMFs) on the continental slope of the NW Barents Sea: the Bear Island and the Storfjorden–Kveithola TMFs. New bathymetric data in the upper part of this channel system show a series of gullies that incise the shelf break and minor tributary channels on the upper part of the continental slope. These gullies and channels appear far more developed than those on the rest of the NW Barents Sea margin, increasing in size downslope and eventually merging into the INBIS channel. Morphological evidence suggests that the Northern part of the INBIS channel system preserved its original morphology over the last glacial maximum (LGM), whereas the Southern part experienced the emplacement of mass transport glacigenic debris that obliterated the original morphology. Radiometric analyses were applied on two sediment cores to estimate the recent (~ 110 years) sedimentation rates. Furthermore, analysis of grain size characteristics and sediment composition of two cores shows evidence of turbidity currents. We associate these turbidity currents with density-driven plumes, linked to the release of meltwater at the ice-sheet grounding line, cascading down the slope. This type of density current would contribute to the erosion and/ or preservation of the gullies’ morphologies during the present interglacial. We infer that Bear Island and the shallow morphology around it prevented the flow of ice streams to the shelf edge in this area, working as a pin (fastener) for the surrounding ice and allowing for the development of the INBIS channel system on the inter-ice stream part of the slope. The INBIS channel system was protected from the burial by high rates of ice-stream derived sedimentation and only partially affected by the local emplacement of glacial debris, which instead dominated on the neighbouring TMF systems.
DOI
10.1007/s41063-019-00065-9
Archivio
http://hdl.handle.net/11368/2936821
https://link.springer.com/article/10.1007%2Fs41063-019-00065-9
Diritti
closed access
license:copyright editore
FVG url
https://arts.units.it/request-item?handle=11368/2936821
Soggetti
  • INBIS

  • Channel system

  • Barents Sea

  • Trough mouth fan

  • Glaciated margin

  • 210Pb dating method

Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback