Common techniques represent images by quantizing local descriptors and summarizing their distribution in a histogram. In this paper we propose to employ a parametric description and compare its capabilities to histogram based approaches. We use the multivariate Gaussian distribution, applied over the SIFT descriptors, extracted with dense sampling on a spatial pyramid. Every distribution is converted to a high-dimensional descriptor, by concatenating the mean vector and the projection of the covariance matrix on the Euclidean space tangent to the Riemannian manifold. Experiments on Caltech-101 and ImageCLEF2011 are performed using the Stochastic Gradient Descent solver, which allows to deal with large scale datasets and high dimensional feature spaces.