Logo del repository
  1. Home
 
Opzioni

New Multicomponent Porous Architecture of Self-Assembled Porphyrins/Calixarenes Driven by Nickel Ions

BRANCATELLI, GIOVANNA
•
DE ZORZI, RITA
•
HICKEY, JAMES NEIL
altro
GEREMIA, SILVANO
2012
  • journal article

Periodico
CRYSTAL GROWTH & DESIGN
Abstract
A new multicomponent material with nanoporous structure has been synthesized by co-crystallization of a mixture of cationic meso-tetrakis(4-N-methylpyridyl)porphyrin (H2T4) and meso-tri(4-N-methylpyridyl)porphyrin (H2T3py) with polyanionic 5,11,17,23-tetrasulfonato-25,26,27,28-tetrakis(hydroxylcarbonylmethoxy)calix[4]arene (C4TsTc) in the presence of Ni2+ ions. The structural analysis indicates that the overall architecture is assembled by interpenetrated two-dimensional (2D) meshes where the nodes are built up by a central tetracationic H2T4 porphyrin with arms hosted in sulphonated rims of four cavitands. The approximately 2D square network is formed by Ni2+ ions bridging the calixarene carboxylate rims in a tail-to-tail fashion. The central H2T4 stacks with two external H2T3py molecules having the neutral pyridine arm N-coordinated to Ni2+ ions. These metal centers interconnect the orthogonal 2D meshes by further coordination of calixarene–carboxylate groups. Self-organization of the new multicomponent material, featuring large channels (60% of volume accessible to solvent molecules) and potential readily accessible metal active sites, has been driven by both supramolecular host–guest recognition and coordinative assembly. The thermal behavior of native and nickel-containing crystals was studied by hot stage microscopy and differential scanning calorimetry. The decomposition temperatures of the multicomponent materials, 465–470 °C, are about 100 °C higher than those of the single building blocks.
DOI
10.1021/cg3010689
WOS
WOS:000309493300055
Archivio
http://hdl.handle.net/11368/2616835
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84867022986
Diritti
metadata only access
Soggetti
  • crystal structure

  • porphyrin

  • calixarene

Scopus© citazioni
28
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Web of Science© citazioni
28
Data di acquisizione
Mar 11, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback