Logo del repository
  1. Home
 
Opzioni

RNA Conformational Ensembles: Narrowing the GAP between Experiments and Simulations with Metadynamics

Gil Ley, Alejandro
•
Bottaro, Sandro
•
Bussi, Giovanni
2016
  • journal article

Periodico
BIOPHYSICAL JOURNAL
Abstract
The computational study of conformational transitions in nucleic acids still faces many challenges. For example, in the case of single stranded RNA tetranucleotides, agreement between simulations and experiments is not satisfactory due to inaccuracies in the force fields commonly used in molecular dynamics. Improvement of force fields is however hindered by the difficulties of decoupling those errors from the statistical errors caused by insufficient sampling. We here tackle both problems simultaneously by introducing a novel enhancing sampling method and using experimental data to improve RNA force fields. In this novel method, concurrent well-tempered metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strength of the bias potential exploiting the tunability of well-tempered metadynamics so as to scale barriers on individual collective variables [1]. At the same time, the metadynamics algorithm is modified so as to allow enforcing a target distribution of backbone and sugar-base torsion angles taken from experimental structures, using a procedure related to two recently introduced techniques. Replica-exchange simulations of several RNA tetranucleotides with experimental corrections show significantly better agreement with NMR experimental data and suggest a systematic procedure for force field refinement. [1] Gil-Ley, A.; Bussi, G. J. Chem. Theory Comput. 2015, 11, 1077-1085.
DOI
10.1016/j.bpj.2015.11.2796
WOS
WOS:000375143000040
Archivio
http://hdl.handle.net/20.500.11767/15052
Diritti
closed access
Soggetti
  • Settore FIS/03 - Fisi...

Web of Science© citazioni
0
Data di acquisizione
Mar 27, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback