Logo del repository
  1. Home
 
Opzioni

Robotic upright stand trainer (RobUST) and postural control in individuals with spinal cord injury

Bowersock C. D.
•
Pisolkar T.
•
Omofuma I.
altro
Rejc E.
2022
  • journal article

Periodico
THE JOURNAL OF SPINAL CORD MEDICINE
Abstract
Context/objective: Assessed feasibility and potential effectiveness of using a novel robotic upright stand trainer (RobUST) to deliver postural perturbations or provide assistance-as-needed at the trunk while individuals with spinal cord injury (SCI) performed stable standing and self-initiated trunk movements. These tasks were assessed with research participants’ hands on handlebars for self-balance assistance (hands on) and with hands off (free hands). Design: Proof of concept study. Participants: Four individuals with motor complete (n = 3) or incomplete (n = 1) SCI who were not able to achieve independent standing and presented a neurological lesion level ranging from cervical 4 to thoracic 2. Outcome measures: Ground reaction forces, trunk displacement, and electromyography activity of trunk and lower limb muscles. Results: Research participants received continuous pelvic assistance via RobUST, and manual trainer assistance at the knees to maintain standing. Participants were able to attempt all tasks. Free hands trunk perturbations resulted in greater load bearing-related sensory information (73% ipsilateral vertical loading), trunk displacement (57%), and muscle activation compared to hands on. Similarly, free hands stable standing with RobUST assistance-as-needed resulted in 8.5% larger bodyweight bearing, 112% larger trunk movement velocity, and higher trunk muscles activation compared to standing with hands on. Self-initiated trunk movements controlled by hands on showed 116% greater trunk displacement, 10% greater vertical ground reaction force, and greater ankle muscle activation compared to free hands. Conclusion: RobUST established a safe and challenging standing environment for individuals with SCI and has the potential to improve training paradigms and assessments of standing postural control.
DOI
10.1080/10790268.2022.2069532
WOS
WOS:000792711600001
Archivio
https://hdl.handle.net/11390/1249786
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85130149150
https://ricerca.unityfvg.it/handle/11390/1249786
Diritti
metadata only access
Soggetti
  • Force field

  • Perturbation

  • Postural control

  • Robotic

  • Spinal cord injury

  • Standing

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback