Logo del repository
  1. Home
 
Opzioni

A Ge.F.I. Collaborative Study: Evaluating Reproducibility and Accuracy of a DNA‐Methylation‐Based Age‐Predictive Assay for Routine Implementation in Forensic Casework

Onofri, Martina
•
Alessandrini, Federica
•
Aneli, Serena
altro
Carnevali, Eugenia
2025
  • journal article

Periodico
ELECTROPHORESIS
Abstract
The increasing interest in DNA methylation (DNAm) analysis within the forensic scientific community prompted a collaborative project by Ge.F.I. (Genetisti Forensi Italiani). The study evaluated a standardized bisulfite conversion-based Single Base Extension (SBE) protocol for the analysis of the methylation levels at five age-predictive loci (ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59). The study encompassed three phases: (1) setting up and validating the protocol to ensure consistency and reproducibility; (2) comparing fresh peripheral blood with blood spots; and (3) evaluating sources of intra- and inter-laboratory variability. Samples from 22 Italian volunteers were analyzed by 6 laboratories in replicates for a total of 528 records. From phase I emerged that the choice of genetic sequencer significantly contributed to inter-laboratory data variation, resulting in separate regression analyses performed for each laboratory. In phase II, blood spots were found to be a reliable source for DNAm analysis, despite exhibiting increased experimental variation compared to fresh peripheral blood. In phase III, a strong correlation between the individual's predicted and true ages was observed across different laboratories. Analysis of variance (ANOVA) of the residuals indicated that one-third of the total variance could be attributed to laboratory-specific factors, whereas two-thirds could be attributed to inter-individual biological differences. The leave-one-out cross-validation (LOO-CV) method yielded an overall mean absolute deviation (MAD) value of 4.41 years, with an average 95% confidence interval of 5.24 years. Stepwise regression analysis proved that a restricted model (ELOVL2, C1orf132/MIR29B2C, and TRIM59) produced results virtually indistinguishable from the five-loci model. Additionally, the analysis of samples in replicates greatly improved the fit of the regression model, balancing the slight effects of intra-laboratory variability. In conclusion, the bisulfite conversion-based SBE protocol, combined with replicate analysis and in-lab calibration of a regression-prediction model, proves to be a reliable and easily implementable method for age prediction in forensic laboratories.
DOI
10.1002/elps.202400190
WOS
WOS:001390503000001
Archivio
https://hdl.handle.net/11368/3102698
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85214417522
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elps.202400190
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc/4.0/
FVG url
https://arts.units.it/bitstream/11368/3102698/3/Electrophoresis - 2025 - Onofri - A Ge F I Collaborative Study Evaluating Reproducibility and Accuracy of a.pdf
Soggetti
  • CpG marker

  • DNA methylation

  • Single Base Extension...

  • age prediction

  • inter‐laboratory vali...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback