Logo del repository
  1. Home
 
Opzioni

Integrable Floquet Hamiltonian for a Periodically Tilted 1D Gas

Colcelli A.
•
Mussardo G.
•
Sierra G.
•
Trombettoni A.
2019
  • journal article

Periodico
PHYSICAL REVIEW LETTERS
Abstract
An integrable model subjected to a periodic driving gives rise generally to a nonintegrable Floquet Hamiltonian. Here we show that the Floquet Hamiltonian of the integrable Lieb-Liniger model in the presence of a linear potential with a periodic time-dependent strength is instead integrable and its quasienergies can be determined using the Bethe ansatz approach. We discuss various aspects of the dynamics of the system at stroboscopic times and we also propose a possible experimental realization of the periodically driven tilting in terms of a shaken rotated ring potential.
WOS
WOS:000488269500002
Archivio
http://hdl.handle.net/20.500.11767/104300
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85072799613
http://harvest.aps.org/bagit/articles/10.1103/PhysRevLett.123.130401/apsxml
https://arxiv.org/abs/1902.07809
https://ui.adsabs.harvard.edu/abs/2019PhRvL.123m0401C/abstract
Diritti
closed access
Soggetti
  • Schrodinger-equation

  • Bosons

  • Settore FIS/02 - Fisi...

Scopus© citazioni
5
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback