Logo del repository
  1. Home
 
Opzioni

Dimension of attractors and invariant sets in reaction diffusion equations

PRIZZI, Martino
2012
  • journal article

Periodico
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS
Abstract
Under fairly general assumptions, we prove that every compact invariant set $\mathcal I$ of the semiflow generated by the semilinear reaction diffusion equation \begin{equation*} \begin{aligned} u_t+\beta(x)u-\Delta u&=f(x,u),&&(t,x)\in[0,+\infty[\times\Omega,\\ u&=0,&&(t,x)\in[0,+\infty[\times\partial\Omega \end{aligned}\end{equation*} in $H^1_0(\Omega)$ has finite Hausdorff dimension. Here $\Omega$ is an arbitrary, possibly unbounded, domain in $\R^3$ and $f(x,u)$ is a nonlinearity of subcritical growth. The nonlinearity $f(x,u)$ needs not to satisfy any dissipativeness assumption and the invariant subset $\mathcal I$ needs not to be an attractor. If $\Omega$ is regular, $f(x,u)$ is dissipative and $\mathcal I$ is the global attractor, we give an explicit bound on the Hausdorff dimension of $\mathcal I$ in terms of the structure parameter of the equation.
WOS
WOS:000313927500005
Archivio
http://hdl.handle.net/11368/2374389
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84871706875
Diritti
metadata only access
Soggetti
  • reaction diffusion eq...

  • invariant set

  • attractor

  • dimension

Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback