Prostate cancer diagnosis is increasing, being the second most frequently cancer in men
worldwide. The treatment of castrate-resistant prostate cancer is often unsuccessfully and new therapeutic
interventions are searching for. Nucleic acid aptamers targeting eEF1A proteins are emerging molecular tools
for the control of cancer growth. We found that an aptamer named GT75 was able to bind to eEF1A proteins
of human prostate cancer cell lines and to significantly and specifically reduce their growth with respect to
the control oligomer CT75. The highest anti-proliferation effect was found in the androgen-independent PC-3
cells. Interestingly, GT75 was able to specifically inhibit the migration of PC-3 cells but not that of the nontumorigenic
PZHPV-7 cells. The overall results suggest that the GT75 aptamer targeting eEF1A proteins is a
promising molecular drug to develop for the control of the castrate-resistant prostate cancer.