Logo del repository
  1. Home
 
Opzioni

Machine learning hyperparameter selection for Contrast Limited Adaptive Histogram Equalization

Campos GFC
•
Mastelini SM
•
Aguiar GJ
altro
Barbon Junior S
2019
  • journal article

Periodico
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
Abstract
Contrast enhancement algorithms have been evolved through last decades to meet the requirement of its objectives. Actually, there are two main objectives while enhancing the contrast of an image: (i) improve its appearance for visual interpretation and (ii) facilitate/increase the performance of subsequent tasks (e.g., image analysis, object detection, and image segmentation). Most of the contrast enhancement techniques are based on histogram modifications, which can be performed globally or locally. The Contrast Limited Adaptive Histogram Equalization (CLAHE) is a method which can overcome the limitations of global approaches by performing local contrast enhancement. However, this method relies on two essential hyperparameters: the number of tiles and the clip limit. An improper hyperparameter selection may heavily decrease the image quality toward its degradation. Considering the lack of methods to efficiently determine these hyperparameters, this article presents a learning-based hyperparameter selection method for the CLAHE technique. The proposed supervised method was built and evaluated using contrast distortions from well-known image quality assessment datasets. Also, we introduce a more challenging dataset containing over 6200 images with a large range of contrast and intensity variations. The results show the efficiency of the proposed approach in predicting CLAHE hyperparameters with up to 0.014 RMSE and 0.935 R-2 values. Also, our method overcomes both experimented baselines by enhancing image contrast while keeping its natural aspect.
DOI
10.1186/s13640-019-0445-4
WOS
WOS:000467236500001
Archivio
https://hdl.handle.net/11368/3004463
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85065405004
https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-019-0445-4
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3004463/2/s13640-019-0445-4.pdf
Soggetti
  • Intelligent Image Pro...

  • AutoML

  • Meta-Learning

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback