Logo del repository
  1. Home
 
Opzioni

On Asymptotic Stability on a Center Hypersurface at the Soliton for Even Solutions of the Nonlinear Klein–Gordon Equation When 2 ≥p > 5/3

Cuccagna, Scipio
•
Maeda, Masaya
•
Murgante, Federico
•
Scrobogna, Stefano
2024
  • journal article

Periodico
SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Abstract
We extend the result of Kowalczyk, Martel, and Mu & ntilde;oz [J. Eur. Math. Soc. (JEMS), 24 (2022), pp. 2133-2167] on the existence, in the context of spatially even solutions, of asymptotic stability on a center hypersurface at the soliton of the defocusing power nonlinear Klein-Gordon equation with p>3 , to the case 2 >= p>(5)/(3) . The result is attained performing new and refined estimates that allow us to close the argument for power law in the range 2 >= p>(5)/(3) .
DOI
10.1137/23m1590871
WOS
WOS:001315424500037
Archivio
https://hdl.handle.net/20.500.11767/142510
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85201918132
https://ricerca.unityfvg.it/handle/20.500.11767/142510
Diritti
closed access
Soggetti
  • conditional stability...

  • nonlinear Klein-Gordo...

  • soliton

  • virial estimates

  • Fermi golden rule

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback