To obtain the shear velocity structure across North-West of Iran and surrounding areas to a depth of 160 km, we performed a namely Hedgehog nonlinear inversion on Rayleigh wave group velocity dispersion curves in the period range from 7 to 60 s. The distributed dispersion curves are the results of our surface waves dispersion tomography using the data of 280 local and regional seismic events, recorded by the medium and broad band seismic stations in the region. We outline different crust and upper mantle structures for the study area based on calculated group and shear velocities. Our results reveal relatively low velocities at the shorter periods (7 - 10 s) in the presence of sedimentary basins (e.g. South Caspian Basin) and for eastern Anatolia and relatively high velocities along the Sanandaj-Sirjan Metamorphic zone, Alborz, Talesh and the Lesser Caucasus Mountains. By depth inversion of group velocities, we observed a 14 km thick sediments in South Caspian Basin and Kura Depression. Based on our maps at 20 s, we outline different crustal models for the region and highlight the differences between South Caspian Basin and NW Iran, on one side, and the similarities between the South Caspian Basin and Kura Depression, that extend beneath Talesh, Alborz and Lesser Caucasus, on the other. Comparing the shear velocity of lower crust in South Caspian Basin and Kura Depression with that of NW Iran proves different origination of lower crust in the basin, probably oceanic source, because of its significant higher shear velocity rather than NW Iran. The extension of lower crust beneath Talesh is more than middle crust while in Alborz and Lesser Caucasus the amount of extension for middle and lower crust is the same The analysis of group velocities at longer periods (≥ 35 s) and obtained shear velocity models allows us to outline different lithospheric structures and crustal depth in the region. The high group velocities in Talesh, South Caspian Sea and Lesser Caucasus on one side and Zagros Folding and Thrust Belt on the other, beside the result of shear velocity models suggest the presence of a stable and thick mantle lid that seems to be thin or absent in the eastern Anatolia and much of NW Iran. The shallowest Moho and Lithosphere Asthenosphere boundary depth of 37 and 63 km, were observed in Easter Anatolian Accretionary Complex. The thin mantle lid in this region has affected the whole crust in such a way that we observed the lowest shear velocities inside the crust in this region. We observed a significant thickening of both crust and lithosphere in Sanandaj-Sirjan Metamorphic zone comparing to Urmieh Dokhtar Magmatic Arc and Zagros Folding and Thrust Belt on its two sides.