Logo del repository
  1. Home
 
Opzioni

Characterizing the formation of singularities in a superlinear indefinite problem related to the mean curvature operator

Julián López-Gómez
•
Pierpaolo Omari
2020
  • journal article

Periodico
JOURNAL OF DIFFERENTIAL EQUATIONS
Abstract
The aim of this paper is characterizing the development of singularities by the positive solutions of the quasilinear indefinite Neumann problem egin{equation*} label{P} -(u'/sqrt{1+(u')^2})' = lambda a(x) f(u) ; ; ext{in } (0,1), quad u'(0)=0,;u'(1)=0, end{equation*} where $lambdain R$ is a parameter, $ain L^infty(0,1)$ changes sign once in $(0,1)$ at the point $zin(0,1)$, and $f in mc{C}(R)cap mc{C}^1[0, +infty)$ is positive and increasing in $(0,+infty)$ with a potential, $ int_0^{s}f(t),dt$, superlinear at $+infty$. oindent In this paper, by providing a precise description of the asymptotic profile of the derivatives of the solutions of the problem as $l o 0^+$, we can characterize the existence of singular bounded variation solutions solutions of the problem in terms of the integrability of this limiting profile, which is in turn equivalent to the condition medskip egin{center} $left( int_x^z a(t),dt ight)^{- rac{1}{2}}in L^1(0,z) $quad and quad $ left( int_x^z a(t),dt ight)^{- rac{1}{2}}in L^1(z,1).$ end{center} medskip No previous result of this nature is known in the context of the theory of superlinear indefinite problems.
DOI
10.1016/j.jde.2020.01.015
WOS
WOS:000530702100017
Archivio
http://hdl.handle.net/11368/2955597
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85078169630
https://www.sciencedirect.com/science/article/pii/S0022039620300218
Diritti
open access
license:creative commons
license:copyright editore
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/2955597
Soggetti
  • Mean curvature operat...

  • Neumann boundary cond...

  • Indefinite weight

  • Classical solution

  • Bounded variation sol...

  • Formation of singular...

Web of Science© citazioni
13
Data di acquisizione
Jan 18, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback