Logo del repository
  1. Home
 
Opzioni

Inhibition of spinal or hypoglossal motoneurons of the newborn rat by glycine or GABA

MARCHETTI C
•
PAGNOTTA S
•
DONATO R
•
Nistri, Andrea
2002
  • journal article

Periodico
EUROPEAN JOURNAL OF NEUROSCIENCE
Abstract
The function of GABA or glycine during early postnatal development remains controversial as their action is reported as either excitatory or inhibitory. The present study addressed the question of the functional role of GABA or glycine on rat motoneurons shortly after birth. For this purpose, using in vitro preparations from immature rats (postnatal age, P0-P4 days), we recorded from lumbar spinal motoneurons and hypoglossal motoneurons. All data were obtained under current clamp conditions (recording with potassium methylsulphate containing electrodes) from cells at about -70 mV resting potential. On spinal motoneurons we used the glycinergic and GABAergic recurrent postsysnaptic potential (PSP) mediated by Renshaw cells to assess its impact on excitatory synaptic inputs from dorsal afferent fibres. Despite its depolarizing nature, the recurrent PSP consistently inhibited synaptic excitation of lumbar motoneurons. On hypoglossal motoneurons, exogenously applied GABA or glycine produced depolarization with decreased input resistance. This response was always associated with inhibition of cell firing induced by intracellular current pulses. Even when the membrane potential was repolarized to resting level in the presence of GABA or glycine, hypoglossal motoneurons failed to generate spikes. Conversely, similar depolarization produced by glutamate consistently facilitated spike firing. GABAergic and glycinergic synaptic potentials evoked by focal stimulation of the reticular formation inhibited firing and/or increased firing latency in the majority of hypoglossal motoneurons. These results indicate that, immediately after birth, rat motoneurons were inhibited by synaptically released or exogenously applied GABA or glycine.
DOI
10.1046/j.1460-9568.2002.01927.x
WOS
WOS:000174695300005
Archivio
http://hdl.handle.net/20.500.11767/12847
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0036459228
Diritti
metadata only access
Soggetti
  • BRAIN-STEM MOTONEURON...

  • Synaptic transmission...

Scopus© citazioni
57
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Web of Science© citazioni
54
Data di acquisizione
Mar 18, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback