Logo del repository
  1. Home
 
Opzioni

IGF-1 receptor regulates upward firing rate homeostasis via the mitochondrial calcium uniporter

Katsenelson, Maxim
•
Shapira, Ilana
•
Abbas, Eman
altro
Slutsky, Inna
2022
  • journal article

Periodico
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Abstract
Regulation of firing rate homeostasis constitutes a fundamental property of central neural circuits. While intracellular Ca2+ has long been hypothesized to be a feedback control signal, the molecular machinery enabling a network-wide homeostatic response remains largely unknown. We show that deletion of insulin-like growth factor-1 receptor (IGF-1R) limits firing rate homeostasis in response to inactivity, without altering the distribution of baseline firing rates. The deficient firing rate homeostatic response was due to disruption of both postsynaptic and intrinsic plasticity. At the cellular level, we detected a fraction of IGF-1Rs in mitochondria, colocalized with the mitochondrial calcium uniporter complex (MCUc). IGF-1R deletion suppressed transcription of the MCUc members and burst-evoked mitochondrial Ca2+ (mitoCa(2+)) by weakening mitochondria-to-cytosol Ca2+ coupling. Overexpression of either mitochondria-targeted IGF-1R or MCUc in IGF-1R-deficient neurons was sufficient to rescue the deficits in burst-to-mitoCa(2+) coupling and firing rate homeostasis. Our findings indicate that mitochondrial IGF-1R is a key regulator of the integrated homeostatic response by tuning the reliability of burst transfer by MCUc. Based on these results, we propose that MCUc acts as a homeostatic Ca2+ sensor. Faulty activation of MCUc may drive dysregulation of firing rate homeostasis in aging and in brain disorders associated with aberrant IGF-1R/MCUc signaling.
DOI
10.1073/pnas.2121040119
WOS
WOS:000891285100014
Archivio
https://hdl.handle.net/11368/3047484
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85135768585
https://www.pnas.org/doi/full/10.1073/pnas.2121040119
Diritti
open access
license:creative commons
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/bitstream/11368/3047484/1/pnas.2121040119.pdf
Soggetti
  • IGF-1 receptor

  • MCU

  • firing rate homeostas...

  • homeostatic plasticit...

  • mitochonria

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback