Logo del repository
  1. Home
 
Opzioni

Primary microglia maintain their capacity to function despite internalisation and intracellular loading with carbon nanotubes

Bussy, Cyrill
•
Bianco, Alberto
•
Prato, Maurizio
•
Kostarelos, Kostas
2017
  • journal article

Periodico
NANOSCALE HORIZONS
Abstract
Biomedical applications of functionalised carbon nanotubes (f-CNTs) for imaging as well as drug or gene delivery in the brain have recently gained interest. Several studies have demonstrated the potential of f-CNTs to offer treatment options for neurological conditions with success. However, there is also evidence that f-CNTs accumulate preferentially within microglial cells when introduced in the brain. Considering the key immunological role of these cells in the brain and the limited knowledge regarding the interaction of CNTs with microglial cells, it is imperative to understand whether accumulation of CNTs in microglial cells can alter their physiological functions or trigger pro-inflammatory signalling. The aim of the present study was to investigate the basic physiological functions of isolated primary microglial cells over time, following their exposure to multi-walled carbon nanotubes functionalized via different surface chemistries. We rationalized that some chemical strategies may be more deleterious for microglial cell functions than others. We used rat primary microglial cells that can be maintained in cell culture for a long period of time without undergoing cell division. Cell viability, phagocytosis, migration, and pro-inflammatory factor release were studied over one month, following a single exposure to a non-cytotoxic concentration of three different f-CNTs (carboxylated, aminated and both carboxylated and aminated). We show that f-CNTs do not induce inflammation and do not affect the basic functions of microglial cells under these conditions. Importantly, this was the case from day 1 to day 28 post-exposure, even though microglial cells had internalized f-CNTs in subcellular compartments and retained the nanotube load in their cytoplasm over time.
DOI
10.1039/c7nh00055c
WOS
WOS:000408038000006
Archivio
http://hdl.handle.net/11368/2941373
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85041727407
http://www.rsc.org/journals-books-databases/about-journals/nanoscale-horizons/?id=8277
Diritti
closed access
license:copyright editore
FVG url
https://arts.units.it/request-item?handle=11368/2941373
Soggetti
  • Materials Science (al...

Web of Science© citazioni
4
Data di acquisizione
Mar 27, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback