Spatial updating allows people to keep track of the self-to-object relations during movement. Previous studies demonstrated that physical movement enhanced spatial updating in remote environments, but failed to find the same effect in described environments. However, these studies mainly considered rotation as a physical movement, without examining other types of movement, such as walking. We investigated how walking affects spatial updating within described environments. Using the judgement of relative directions task, we compared the effects of imagination of rotation, physical rotation, and walking on spatial updating. Spatial updating was evaluated in terms of accuracy and response times in different perspectives, and by calculating two indexes, namely the encoding and sensorimotor alignment effects. As regards response times, we found that in the imagination of rotation and physical rotation conditions the encoding alignment effect was higher than the sensorimotor alignment effect, while in the walking condition this gap disappeared. We interpreted these results in terms of an enhanced link between allocentric and sensorimotor representations, due to the information acquired through walking.