Logo del repository
  1. Home
 
Opzioni

Hilbert schemes and stable pairs: GIT and derived category wall crossings

Stoppa, Jacopo
•
Thomas Richard Paul
2011
  • journal article

Periodico
BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Abstract
We show that the Hilbert scheme of curves and Le Potier’s moduli space of stable pairs with one dimensional support have a common GIT construction. The two spaces correspond to chambers on either side of a wall in the space of GIT linearisations. We explain why this is not enough to prove the “DT/PT wall crossing conjecture” relating the invariants derived from these moduli spaces when the underlying variety is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory for such wall crossings, and use it to give a short proof of an identity relating the Euler characteristics of these moduli spaces. When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of the DT/PT wall crossing conjecture, but for general 3-folds it is something different, as we discuss.
DOI
10.24033/bsmf.2610
WOS
WOS:000302200700002
Archivio
http://hdl.handle.net/20.500.11767/14594
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84862081748
http://arxiv.org/abs/0903.1444
Diritti
open access
Soggetti
  • Hilbert scheme

  • stable pair

  • wall-crossing

Scopus© citazioni
20
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
23
Data di acquisizione
Mar 12, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback