Logo del repository
  1. Home
 
Opzioni

Ten quick tips for clinical electroencephalographic (EEG) data acquisition and signal processing

Cisotto G.
•
Chicco D.
2024
  • journal article

Periodico
PEERJ. COMPUTER SCIENCE.
Abstract
Electroencephalography (EEG) is a medical engineering technique aimed at recording the electric activity of the human brain. Brain signals derived from an EEG device can be processed and analyzed through computers by using digital signal processing, computational statistics, and machine learning techniques, that can lead to scientifically-relevant results and outcomes about how the brain works. In the last decades, the spread of EEG devices and the higher availability of EEG data, of computational resources, and of software packages for electroencephalography analysis has made EEG signal processing easier and faster to perform for any researcher worldwide. This increased ease to carry out computational analyses of EEG data, however, has made it easier to make mistakes, as well. And these mistakes, if unnoticed or treated wrongly, can in turn lead to wrong results or misleading outcomes, with worrisome consequences for patients and for the advancements of the knowledge about human brain. To tackle this problem, we present here our ten quick tips to perform electroencephalography signal processing analyses avoiding common mistakes: a short list of guidelines designed for beginners on what to do, how to do it, and what not to do when analyzing EEG data with a computer. We believe that following our quick recommendations can lead to better, more reliable and more robust results and outcome in clinical neuroscientific research.
DOI
10.7717/PEERJ-CS.2256
WOS
WOS:001304478200001
Archivio
https://hdl.handle.net/11368/3103578
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85203851743
https://peerj.com/articles/cs-2256/
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3103578/1/Cisotto-Chicco-2024-PeerJ Computer Science-VoR.pdf
Soggetti
  • EEG

  • Electroencephalograph...

  • Medical signal proces...

  • Quick tip

  • Signal processing

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback