Logo del repository
  1. Home
 
Opzioni

Efficient computational screening of strongly correlated materials: Multiorbital phenomenology within the ghost Gutzwiller approximation

Mejuto-Zaera, C.
•
Fabrizio, M.
2023
  • journal article

Periodico
PHYSICAL REVIEW. B
Abstract
The theoretical description of strongly correlated materials relies on the ability to simultaneously capture, on equal footing, the different competing energy scales. Unfortunately, existing approaches are either typically extremely computationally demanding, making systematic screenings of correlated materials challenging or are limited to a subset of observables of interest. The recently developed ghost Gutzwiller ansatz (gGut) has shown great promise to remedy this dichotomy. It is based on a self-consistency condition around the comparatively simple static one-particle reduced density matrix, yet has been shown to provide accurate static and dynamical observables in one-band systems. In this work, we investigate its potential role in the modeling of correlated materials, by applying it to several multiorbital lattice models. Our results confirm the accuracy at lower computational cost of the gGut, and show promise for its application to materials research.
DOI
10.1103/physrevb.107.235150
WOS
WOS:001179558900001
Archivio
https://hdl.handle.net/20.500.11767/133570
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85163953278
Diritti
open access
Soggetti
  • Settore FIS/03 - Fisi...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback