Logo del repository
  1. Home
 
Opzioni

Improving the seismic capacity of steel–concrete composite frames with spiral-confined slabs

Fasan, Marco
•
Bedon, Chiara
•
Troiano, Nicola
•
Amadio, Claudio
2022
  • journal article

Periodico
ADVANCES IN STRUCTURAL ENGINEERING
Abstract
The seismic performance analysis of steel–concrete composite frames involves, as known, the interaction of several load-bearing components that should be properly designed, with multiple geometrical and mechanical parameters to account. Practical recommendations are given by the Eurocode 8 (EC8) – Annex C for the optimal detailing of transverse rebars, so as to ensure the activation of conventional resisting mechanisms. In this paper, the attention is focused on the analysis of effects and benefits due to a novel confinement solution for the reinforced concrete (RC) slab. The intervention is based on the use of diagonal steel spirals, that are expected to enforce the overall compressive response of the RC slab, thanks to the activation of an optimized strut-and-tie resisting mechanism. The final expectation is to first increase the resistance capacity of the slab that can thus transfer higher compressive actions under seismic loads. Further, as shown, the same resisting mechanism can be beneficial for the yielding of steel rebars, depending on the final detailing of components, and thus possibly improve the ductility of the system. To this aim, a refined finite element (FE) numerical analysis is carried out for several configurations of technical interest. The in-plane compressive behaviour and the activation of resisting mechanisms are explored for several spiral-confined slabs, based on various arrangements. Major advantage is taken from literature experimental data on RC slabs that are further investigated by introducing the examined confinement technique. The attention is hence given to the local and the global structural effects due to different arrangements for the proposed steel spirals. As shown, once the spirals are optimally placed into the slab, the strength and ductility parameters of the concrete struts can be efficiently improved, with marked benefits for the overall resisting mechanisms of the slab, and thus for the steel–composite frames as a whole.
DOI
10.1177/13694332221086682
WOS
WOS:000783559700001
Archivio
http://hdl.handle.net/11368/3025144
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85128170364
https://journals.sagepub.com/doi/abs/10.1177/13694332221086682
Diritti
open access
license:copyright editore
license:digital rights management non definito
license uri:iris.pri02
license uri:iris.pri00
FVG url
https://arts.units.it/request-item?handle=11368/3025144
Soggetti
  • steel–concrete compos...

  • spiral reinforcement

  • slab confinement

  • finite element numeri...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback