Logo del repository
  1. Home
 
Opzioni

Entropy in a category

DIKRANJAN, Dikran
•
GIORDANO BRUNO, Anna
2013
  • journal article

Periodico
APPLIED CATEGORICAL STRUCTURES
Abstract
The Pinsker subgroup of an abelian group with respect to an endomorphism was introduced in the context of algebraic entropy. Motivated by the nice properties and characterizations of the Pinsker subgroup, we generalize its construction in two directions. Indeed, we introduce the concept of entropy function h of an abelian category, and we define the Pinsker radical with respect to h, so that the class of all objects with trivial Pinsker radical is the torsion class of a torsion theory.
DOI
10.1007/s10485-011-9256-1
WOS
WOS:000313649900004
Archivio
http://hdl.handle.net/11390/696687
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84872611069
http://link.springer.com/article/10.1007%2Fs10485-011-9256-1
Diritti
open access
Soggetti
  • entropy function

  • abelian category

  • Pinsker radical

  • flows category

  • algebraic entropy.

Scopus© citazioni
9
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
9
Data di acquisizione
Mar 19, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback