Logo del repository
  1. Home
 
Opzioni

Coarse-grained models for self-assembling systems

Polles, Guido
2015-10-12
  • doctoral thesis

Abstract
In the last years, a considerable deal of work has so far been spent to understand and hence harness the physical principles that underpin the general properties of self-assembling systems. In particular, theoretical and computational modelling have been extensively used to obtain a detailed description of the actual process. This thesis reports on computational work, focusing on two different self-assembling systems and from two distinct perspectives. In the first part, a computational study of the self-assembly of string-like rigid templates in solution aims to explore to what extent it is possible to direct the assembly of the templates into knotted or linked structures by suitably tuning geometrical parameters of the system. The second part is devoted to some of the smallest instances of molecular self-assembly in nature, that is viral capsids. We report on the development of a physics-based algorithm to subdivide the structure of a capsid in quasi-rigid units, helping to elucidate the pathway of assembly from the identification of its building blocks with a top-down approach.
Archivio
http://hdl.handle.net/20.500.11767/4850
Diritti
open access
Soggetti
  • Links

  • Settore FIS/02 - Fisi...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback